R resources

- Download R by typing "R download" in google.

Using \mathbf{R} to compute descriptive statistics

- To assign the specified numbers $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}$, to a variable, say x , type $\mathrm{x}<-\mathrm{c}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$
Example: $\mathrm{x}<-\mathrm{c}(1,4,6,5)$ assigns the numbers 1, 4, 6 and 5 to the vector x .
- To generate a sequence of numbers starting from 1 and ending at n with a jump of size k try seq ($1, n, b y=k$)

Example: seq(1, 10,by=1) generates: 12345678910 .

- To compute sample mean for the data x, type mean (x)
- To compute sample variance for the data x, type var (x)
- To compute sample standard deviation for the data x, type $s d(x)$
- To compute the first quartile for the data x , type quartile (X, 0.25)
- To compute the second quartile for the data x , type quartile (X,0.50)
- To compute the third quartile for the data x , type
quartile(X,0.75)
- To get summary for the data x try summary (x)
- To plot histogram for data x type hist (X)

Example: The following histogram is based on 100 sample data.
Histogram of x

- To plot boxplot (or box and whisker plot) for the data x type boxplot(x)

Example: The following histogram is based on 100 sample data. boxplot(x)

- To make a stem and leaf plot for the data x type stem (x)

Example: The following histogram is based on 100 sample data.
stem(x)

```
The decimal point is at the I
-3 1 0
-2 | 40
-1 | 96333200
-0 | 9998888877666555444333222222111
0 | 0001111122233333444555566666667777888999999
1 | 012234446677889
2 | 02
```

Exercise: For the following data sets

Table 4.2: Car Battery Life

2.2	4.1	3.5	4.5	3.2	3.7	3.0	2.6
3.4	1.6	3.1	3.3	3.8	3.1	4.7	3.7
2.5	4.3	3.4	3.6	2.9	3.3	3.9	3.1
3.3	3.1	3.7	4.4	3.2	4.1	1.9	3.4
4.7	3.8	3.2	2.6	3.9	3.0	4.2	3.5

(a) Compute sample mean, variance, standard deviation and quartiles. Also try summary of x.
(b) Construct a histogram.
(c) Construct a boxplot.
(d) Construct the corresponding stem and leaf plot.

